
Intel Cheat Sheet

Registers
• Each of the following registers is 32 bits in size

Name Meaning of Acronym Usage

EAX Accumulator General Purpose Register

EBX Base General Purpose Register

ECX Counter General Purpose Register

EDX Data General Purpose Register

ESI Source Index General Purpose Register

EDI Destination Index General Purpose Register

EBP Base Pointer Used as the base pointer in C code. Can be used as
a general register in stand alone code

ESP Stack Pointer The stack pointer.

• You can access smaller portions of EAX, EBX, ECX, and EDX
◦ The following example only shows the syntax for eax but it does apply to the the above

mentioned registers
Syntax Size

EAX 32 bits

AX Lower 16 bits of EAX

AH The upper 8 bits of AX

AL The lower 8 bits of AX

AS Preprocesser Memory Allocations
Syntax Effect Example

.byte val Make space for a byte and
initialize it val

.byte 'h'

.word val Make space for 2 bytes and
initialize it val

.word 12

.long val Make space for 4 byte and
initialize it val

.long 1024

.float val Make space for 4 bytes and
initialize its value to the IEE
floating point standard

.float 58.45

.string val Make space for null terminated
string and initialize it to val.

.string “Rock the boat”

.space N Make space for N bytes of
uninitialized memory

.space 16

GAS Preprocessor Directives
Syntax Effect Example

.equ label, value Defines label to be value. All
occurrences of label will be
substituted with value

.equ wordsize, 4

.data Marks the beginning of the data
section

.text Marks the beginning of the
instruction section

label_name: Creates the label with name
label_name

hello_world:

.global label Make label visible to linker .global _start

.rept N
code
.endr

Repeat all code N times .rept 4
addl %eax, %eax
.endr

_start: While not actually a
preprocessor directive _start
indicates where execution should
begin. It is equivalent to main in
C

Operations
• In operations that require two operands the left is called the source and the right the destination

Operation Result Affects Flag Register?

mov src, dest dest = src No

add src, dest dest = dest + src Yes

sub src, dest dest = dest - src Yes

cmp src, dest dest – src (result not stored) Yes

inc dest dest = dest + 1 Yes

dec dest dest = dest - 1 Yes

and src, dest dest = dest & src Yes

or src, dest dest = dest | src Yes

xor src, dest Dest = dest ^ src Yes

not dest dest = ~dest Yes

shr src, dest dest = dest >> src (brings in 0s) Yes

sar src, dest dest = dest >> src (brings in bit
with same value as MSB

Yes

shl src, dest dest = dest << src Yes

sal src, dest dest = dest << src (identical to
shl)

Yes

• Constants can be specified for the source by placing a $ in front of the value
◦ ie addl $4, %ecx

• All of the above operations need to have one of the following suffixes appended to them to
determine the size of the unit they are operating on

• R is standing in for the variable name of each register ie (A,B,C,D)

Suffix Size Register Portion To Use

l (this is the letter L not 1) 32 bits ERX

w 16 bits RX

b byte RL

Multiplication and Division
Operation Result Type Affects Flag Register?

mulb src ax = al * src unsgined Yes

mulw src dx:ax = ax * src unsgined Yes

mull src edx:eax = eax * src unsgined Yes

divb src ah = al / src
al = ax % src

unsgined Yes

divw src ax = dx:ax / src
dx = dx:ax % src

unsgined Yes

divl src eax = edx:eax / src
edx = edx:eax % src

unsgined Yes

• EDX:EAX means to concatenate the bits in EAX and EDX together and treat it as a 64 bit
number

• To do signed multiplication/division append an I to the front of the instruction ie(imull, idivl)

“String” Instructions
Operation Result ECX EDI ESI

movsb C(%edi) =
C(%esi)

ECX-- If Direction EDI -= 1 else EDI += 1 If Direction ESI -= 1
else ESI += 1

movsw C(%edi) =
C(%esi)

ECX-- If Direction EDI -= 2 else EDI += 2 If Direction ESI -= 2
else ESI += 2

movsl C(%edi) =
C(%esi)

ECX-- If Direction EDI -= 4 else EDI += 4 If Direction ESI -= 4
else ESI += 4

stosb C(%edi) = AL ECX-- If Direction EDI -= 1 else EDI += 1 Unaffected

stosw C(%edi) =AX ECX-- If Direction EDI -= 2 else EDI += 2 Unaffected

stosl C(%edi) = EAX ECX-- If Direction EDI -= 4 else EDI += 4 Unaffected

cmpsb C(%esi) -
C(%edi)

ECX-- If Direction EDI -= 1 else EDI += 1 If Direction ESI -= 1
else ESI += 1

cmpsw C(%esi) -
C(%edi)

ECX-- If Direction EDI -= 2 else EDI += 2 If Direction ESI -= 2
else ESI += 2

cmpsl C(%esi) -
C(%edi)

ECX-- If Direction EDI -= 4 else EDI += 4 If Direction ESI -= 4
else ESI += 4

scasb AL - C(%edi) ECX-- If Direction EDI -= 1 else EDI += 1 Unaffected

scasw AX - C(%edi) ECX-- If Direction EDI -= 2 else EDI += 2 Unaffected

scasl EAX - C(%edi) ECX-- If Direction EDI -= 4 else EDI += 4 Unaffected

• Direction is controlled by the direction flag. To set the direction flag use the instruction STD. To
clear the direction flag use CLD

Repetition Prefixes
Operation Supported Prefixes

movs rep

stos rep

cmps rep, repe, repne

scas rep, repe, repne

• Appending rep to any of the instructions mentioned causes them to continue to execute until
ECX reaches 0

• repe (repeat while equal) causes the instruction to be repeated until either ECX reaches 0 or the
comparison results in an inequality

• repne (repeat while not equal) causes the instruction to be repeated until either ECX reaches 0
or the comparison results in an equality

• For repe and repne to check what caused the termination of the instruction you can use
◦ JECXZ: Jump if ECX is 0, to check if ECX's value is 0
◦ JZ/JNZ: to check if the comparison resulted in an equality/inequality

Jumps
Instruction Description Comparison Type

jmp label Unconditional jump NA

jl label Jump if less than 0 Signed

jg label Jump if greater than 0 Signed

jle label Jump if less than or equal 0 Signed

jge label Jump if greater than or equal 0 Signed

jb label Jump if below 0 Unsigned

ja label Jump if above 0 Unsigned

jbe label Jump if below or equal 0 Unsigned

jae label Jump if above or equal 0 Unsigned

jz label Jump if zero Signed or Unsigned

jnz label Jump if not zero Signed or Unsigned

jc label Jump if carry NA

jnc label Jump if no carry NA

jo label Jump if overflow NA

jno label Jump if no overflow NA

• Jumps are used to control the flow of execution
• All jumps are based off the last instruction to set the sign flag

Stack Operations
Operation Result Affects Flag Register?

pushl src C(esp) = src, esp -= 4 No

popl dest dest = C(esp), esp += 4 No

• C means the value of the contents of memory at the given
• All operations to the stack must be of word size so you can't do pushw, popb, etc

Call and Return
Operation Result

Call label Push PC, jmp label

ret Pop PC

Indexing Syntax
• displacement(base, index, scale)

◦ Result access memory at location displacement+base+index∗scale
Field Type Value if not specified

displacement Constant 0

base register 0

index register 0

scale One of (1,2,4, and maybe 8). If
index is not give scale should not
be provided

1

◦ Displacement, base, index,a and scale are all optional.
◦ If you want the address that is computed by the advanced indexing syntax you can use the

leal instruction
▪ leal dispalcement(base, index, scale), %dest

• dest = displacement + base + (index * scale)

C Conventions
• Arguments are pushed in reverse order of their appearance (ie right to left)

◦ Example: int foo(int a, int b, int c)
▪ First c is pushed, then b, then a, and then the function is called

• Local variables are pushed in order of their appearance (ie left to right)
◦ myfun()

 int x,y,z;
 int a,b,c;

◦ The push order would be x,y,z,a,b,c
• On entry to a function registers EAX, ECX, and EDX will not have live values

◦ This means in your function you are free to overwrite these registers without saving their
values

◦ This also means that if you call a C function in your assembly you must be sure to save
EAX, ECX, and EDX before you make the call as that function is likely going to overwrite
those values

◦ If you want to use any other registers you must make sure to save their values before
overwriting them and restore them to their original values before leaving your function

• The return value of a function is placed in EAX
◦ 64 bit return values are placed in EDX:EAX

Inline Assembly
• It is possible to insert assembly code directly into either C or C++ code by using the __asm__

construct
• The format using __asm__ is

◦ __asm__(assembly code : outputs : inputs : clobber list);
◦ outputs, inputs, and the clobber list are all optional
◦ If you don't have outputs the call looks like __asm__(assembly code : : inputs : clobber list)

• Assembly code is a string containing the assembly instructions that you would like executed.
◦ Each instruction has to be separated by a valid delimiter

▪ For us that is going to be ;
▪ Registers have 2 % signs placed in front of them

• ie %%eax, %%ebx, %%esi, etc
▪ Arguments have a single % placed in front of them

◦ Outputs and inputs are how we map variables that are in the C code into our inlined
assembly. Each one has the form
▪ ['['symbolic name']'] “modifiers* constraints+” (C variable name)

• [] denote optional
• * means 0 or more
• + means 1 or more
• if something is enclosed in ' ' it is literally that character

Constraint Meaning

a EAX

b EBX

c ECX

d EDX

S ESI

D EDI

r Any general purpose register. The compiler
chooses which one to use

m memory

g Any general purpose register or memory

Modifiers Meaning

'=' This variable is write only. The C value variable
associated with this inline assembly value will be
overwritten with this value

+ This variable is both read and write

& This variable will be written to before all inputs
are consumed (early colobber)

▪ Symbolic names allow you to refer to this argument more conveniently in the assembly
code. To refer to an argument in the assembly you do %[symbol name]

• Symbolic names do not have to be the same as the name of the C variable but they
can be.

▪ If you do not give symbolic names you can refer to the argument by its position. %0 is
the first argument, %1 the second, %2, the third and so on

◦ The clobbered list contains the registers, memory, and condition codes that could change but
are not listed as either inputs or outputs

Name Description

“%eax”, “%ebx”, “%ecx” ,... EAX, EBX, ECX, ...

memory Memory

cc The condition codes. In the intel case this is the
eflags register

• Short example. For more examples see basicInline.cpp and inlineFun.cpp

int a = 10;
int b = 20;
int c = 30;
int x,y;
__asm(
“movl %3, %%eax;” //set x to a's value
“addl %[fun], %[newc];” //c+= b
“movl %[newc], %1” // y = c
:
“=a” (x), “=m” (y), [newc] “+r” (c) :
[a] “g” (a), [fun] “b” (b):
“cc”
);

